$X_\text{dB} = 10\log_{10}(X_{LIN})$
$X_{LIN} = 10^{{\text{dB}}/10}$
$\text{mW} = 10^{{\text{dBm}}/10}$
$\text{dBm} = 10\log_{10}(\text{W} * 10^3) = \\
\ \ \ \ \ \ \ \ \ = 10\log_{10}(\text W) + 30$
$\text{dBW} =10\log_{10}(\text{mW} * 10^{-3}) = \\
\ \ \ \ \ \ \ \ \ \ = 10\log_{10}(\text{mW}) - 30$
$\text{W} = 10^{\text{dBW}/ 10}$
$\text{dBm} = \text{dBW} + 30$
$\text{dBm} = \text{dB} + 30$
$\text{dB} = \text{dBm} - 30$
$\lambda = \cfrac{c}{f}$
$A_0 = \Big( \cfrac{\lambda}{4\pi R}\Big)^2 \lrarr R=\cfrac{\lambda}{\sqrt{A_0}4\pi}$
$G = 10 \log_{10}\Big( \cfrac{P_1}{P_2} \Big)$
$P_{RX}= P_{TX} G_{TX} G_{RX}\Big(\cfrac{\lambda}{4\pi R}\Big)^2$
$R = \cfrac{\lambda}{4\pi}\sqrt{\cfrac{P_{TX}G_{TX}G_{RX}}{P_{RX}}}$
$P_{RX} = P_{TX} + G_{TX} + G_{RX} + A_0$
Esclusivamente in scala logaritmica: $P_{(\text{dBm})}$, $G_{(\text{dB})}$, $A_{0 (\text{dB})}$
$Q = \cfrac DR = \sqrt{3N}$
$D = RQ = R\sqrt{3N}$
$\cfrac SI = \cfrac{Q^{\alpha}}{i_0} = \cfrac{(3N)^{\alpha / 2}}{i_0}$
$C = MNK$
$R = \sqrt{\cfrac{MK}{3C}}*D$
$d=R$
$P_r(d) = P_r(d_0)\cdot \big(\cfrac{d_0}{d}\big)^\alpha$
$P_{r \text{ (dBm)}} = P_{r \text{ (dBm)}}(d_0) - 10 \alpha \log\big( \cfrac{d}{d_0}\big)$
$P_r(d)=M+P_{th}$
$P_{th} + M = P_r(d_0) - 10\alpha \log\Big(\cfrac{d}{d_0}\Big)$
oppure
$M = \cfrac{P_r(d)}{P_{th}}$(LIN)
$C = MNSK_S$
$S$ settori per cella, $K_S$ canali per settore, il numero di canali per cella è $K = SK_S$.
$N = \cfrac{K_{TOT}}{K_{CELLA}}$
$A_0 = u\cdot A_i$
$A_i = \cfrac ch \cdot t= \cfrac{A_0}{u}$
$A_b = A_0 \cdot B$
NB: $B = \text{GoS} (\%)$
$A_c = A_0 - A_b = A_0 \cdot (1- B)$
$\eta = \cfrac{A_c}{k}$
$\delta = \cfrac uA$