Advanced Search:

image.png

Title Link Authors Year Relevant notes
Reinforcement Learning: An Introduction Link Richard S. Sutton and Andrew G. Barto 1998
Deep Reinforcement Learning: A Brief Survey Link Kai Arulkumaran; Marc Peter Deisenroth; … 2017
Vision-Based Autonomous Driving: A Hierarchical Reinforcement Learning Approach Link Jiao Wang; Haoyi Sun; Can Zhu 2023
Advanced Deep Reinforcement Learning Strategies for Enhanced Autonomous Vehicle Navigation Systems Link M Dhinakaran; R.Thalapathi Rajasekaran; V. Balaji; V. Aarthi; S. Ambika 2024
Exploring applications of deep reinforcement learning for real-world autonomous driving systems Link Victor Talpaert
Ibrahim Sobh
Bangalore Ravi Kiran
Patrick Perez 2019
Autonomous Driving System based on Deep Q Learnig Link Takafumi OkuyamaTad GonsalvesJaychand Upadhay 2018 main paper for DQN
An Adaptive Federated Reinforcement Learning Framework with Proximal Policy Optimization for Autonomous Driving Link Huan ChenKuan-Lin ChenHsin-Yao HsuJia-You Hsieh 2023 nice short overview about PPO. anche interessante considerazione sulla non-necessità di avere grossi dataset per l’allenamento, evitando quindi bias
Proximal Policy Optimization-based Reinforcement Learning for End-to-end Autonomous Driving Link Yang WuXin Yua 2023 more detailed overview about PPO

Exploring_applications_of_deep_reinforcement_learn.pdf

Original DQN paper

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. 2015. Human-level control through deep reinforcement learning. Nature 518, 7540 (2015), 529–533.

Original PPO paper:

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal Policy Optimization Algorithms. arXiv:1707.06347 [cs.LG].

Original TRPO paper:

Schulman, J., Levine, S., Abbeel, P., Jordan, M., & Moritz, P. (2015). Trust Region Policy Optimization. In Proceedings of the 32nd International Conference on Machine Learning (pp. 1889–1897). Lille, France: PMLR.

schulman15.pdf

1. Introduction

1.1 Background

1.2 Motivation